f08 — Least-squares and Eigenvalue Problems (LAPACK) f08gcc

NAG C Library Function Document

nag_dspevd (f08gcc)

1 Purpose

nag_dspevd (f08gcc) computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
matrix held in packed storage. If the eigenvectors are requested, then it uses a divide and conquer
algorithm to compute eigenvalues and eigenvectors. However, if only eigenvalues are required, then it
uses the Pal-Walker—Kahan variant of the QL or QR algorithm.

2 Specification

void nag_dspevd (Nag_OrderType order, Nag_JobType job, Nag_UploType uplo,
Integer n, double ap[], double w[], double z[], Integer pdz, NagError *fail)

3 Description

nag_dspevd (f08gcc) computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric
matrix A (held in packed storage). In other words, it can compute the spectral factorization of A as

A= ZANZT,

where A is a diagonal matrix whose diagonal elements are the eigenvalues A;, and Z is the orthogonal
matrix whose columns are the eigenvectors z;. Thus

AZZ':)\Z'Z“ i:l,2,...,n.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: job — Nag JobType Input
On entry: indicates whether eigenvectors are computed as follows:
if job = Nag_DoNothing, only eigenvalues are computed;
if job = Nag_EigVecs, eigenvalues and eigenvectors are computed.

Constraint: job = Nag_DoNothing or Nag_EigVecs.

3: uplo — Nag_ UploType Input
On entry: indicates whether the upper or lower triangular part of A is stored as follows:
if uplo = Nag_Upper, the upper triangular part of A is stored;
if uplo = Nag_Lower, the lower triangular part of A is stored.

Constraint: uplo = Nag_Upper or Nag_Lower.

[NP3645/7] f08gce. 1

f08gcc NAG C Library Manual

4:

n — Integer Input
On entry: n, the order of the matrix A.

Constraint: n > 0.

ap[dim] — double Input/Output
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).

On entry: the symmetric matrix A, packed by rows or columns. The storage of elements a;
depends on the order and uplo parameters as follows:

if order = Nag_ColMajor and uplo = Nag_Upper,
a;; is stored in ap[(j — 1) x j/2 +i— 1], for i < j;

if order = Nag_ColMajor and uplo = Nag_Lower,

a;; is stored in ap[(2n — j) x (j —1)/2 4+ — 1], for i > j;
if order = Nag_RowMajor and uplo = Nag_Upper,
a;; is stored in ap[(2n —4) x (i —1)/2 4 j — 1], for i < j;
if order = Nag_RowMajor and uplo = Nag_Lower,

a;; is stored in ap[(i — 1) x /24 j — 1], for i > j.

On exit: A is overwritten by the values generated during the reduction to tridiagonal form. The
elements of the diagonal and the off-diagonal of the tridiagonal matrix overwrite the corresponding
elements of A.

w(dim] — double Output
Note: the dimension, dim, of the array w must be at least max(1,n).

On exit: the eigenvalues of the matrix A in ascending order.

z[dim| — double Output

Note: the dimension, dim, of the array z must be at least
max(1,pdz x n) when job = Nag_EigVecs;
1 when job = Nag_DoNothing.

If order = Nag_ColMajor, the (4, j)th element of the matrix Z is stored in z[(j — 1) x pdz + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix Z is stored in z[(i — 1) x pdz + j — 1].

On exit: if job = Nag_EigVecs, z is overwritten by the orthogonal matrix Z which contains the
eigenvectors of A.

If job = Nag_DoNothing, z is not referenced.

pdz — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array z.

Constraints:
if job = Nag EigVecs, pdz > max(1,n);
if job = Nag_DoNothing, pdz > 1.
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

f08gce.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08gcc

6 Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pdz = (value).
Constraint: pdz > 0.

NE_ENUM_INT 2

On entry, job = (value), n = (value), pdz = (value).
Constraint: if job = Nag_EigVecs, pdz > max(1,n);
if job = Nag_DoNothing, pdz > 1.

NE_CONVERGENCE

The algorithm failed to converge, (value) elements of an intermediate tridiagonal form did not
converge to zero.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy
The computed eigenvalues and eigenvectors are exact for a nearby matrix A + F, where
1E]l, = O(e)[|Ally,

and € is the machine precision.

8 Further Comments

The complex analogue of this function is nag_zhpevd (f08gqc).

9 Example

To compute all the eigenvalues and eigenvectors of the symmetric matrix A, where
1.0 2.0 3.0 4.0
20 2.0 3.0 40

A=130 30 30 40

40 40 40 40

9.1 Program Text

/* nag_dspevd (f08gcc) Example Program.
* Copyright 2001 Numerical Algorithms Group.

* Mark 7, 2001.

[NP3645/7] f08gcc.3

f08gcc NAG C Library Manual

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars */
Integer i, j, n, ap_len, pdz, w_len;
Integer exit_status=0;
NagError fail;
Nag_JobType job;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2], job_char([2];
double *ap=0, *w=0, *z=0;

#ifdef NAG_COLUMN_MAJOR

#define A_UPPER(I,J) apl[J*(J-1)/2 + I - 1]

#define A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]
order = Nag_ColMajor;

#else

#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]

#define A_UPPER(I,J) apl[(2*n-I)=*(I-1)/2 + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08gcc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*x["\n] ");

Vscanf ("$1d%s*[*\n] ", &n);
ap_len = n*(n+l)/2;

w_len = n;

pdz =n;

/* Allocate memory */

if (!(ap = NAG_ALLOC(ap_len, double))
1 (z NAG_ALLOC(n * n, double)) ||
' (w NAG_ALLOC(w_1len, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
}
/* Read whether Upper or Lower part of A is stored =*/
Vscanf (" ' %1s ’'%*["\n] ", uplo_char);

if (*(unsigned char #*)uplo_char == 'L’)
uplo = Nag_Lower;
else if (#*(unsigned char #*)uplo_char == 'U’)
uplo = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
¥
/* Read A from data file */
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1i; j <= n; ++3)
Vscanf ("$1f", &A_UPPER(i,j));
¥
Vscanf ("sx[*\n] ");
¥
else

f08gcc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08gcc

E

for (1 = 1; 1 <= n; ++1)
{
for (3 = 1; j <= 1i; ++3)
Vscanf ("$1f", &A_LOWER(i,j));
¥
Vscanf ("sx["\n] ");
}
/* Read type of job to be performed x/
Vscanf (" ' %1s ’'%*["\n] ", job_char);

if (*(unsigned char =*)job_char == 'V’)
job = Nag_EigVecs;
else

job = Nag_DoNothing;
/* Calculate all the eigenvalues and eigenvectors of A *x/
f08gcc(order, job, uplo, n, ap, w, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£08gcc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues and eigenvectors */
Vprintf ("Eigenvalues \n");
for (i = 0; i < n; ++1i)
Vprintf (" %8.41f",w[i]);
Vprintf ("\n") ;
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
z, pdz, "Eigenvectors", 0, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
ND:

if (ap) NAG_FREE (ap);
if (w) NAG_FREE (w) ;
if (z) NAG_FREE(z);
return exit_status;

9.2 Program Data

f0

8gcc Example Program Data

4 :Value of N

'L’ :Value of UPLO
1.0

2.0 2.0

3.0 3.0 3.0

4.0 4.0 4.0 4.0 :End of matrix A
v’ :Value of JOB

9.3 Program Results

f0

Ei

E

S w N

8gcc Example Program Results

genvalues

-2.0531 -0.5146 -0.2943 12.8621

igenvectors

1 2 3 4

-0.7003 -0.5144 0.2767 -0.4103
-0.3592 0.4851 -0.6634 -0.4422
0.1569 0.5420 0.6504 -0.5085
0.5965 -0.4543 -0.2457 -0.6144

[NP3645/7] f08gcc.5 (last)

	f08gcc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	job
	uplo
	n
	ap
	w
	z
	pdz
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_ENUM_INT_2
	NE_CONVERGENCE
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

